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Abstract. Recently, discrete sets of numbers, theβ-integersZβ , have been proposed as
numbering tools in quasicrystalline studies. Indeed, there exists a unique numeration system
based on the irrationalβ > 1 in which theβ-integers are all real numbers with no fractional
part. Theseβ-integers appear to be quite appropriate for describing some quasilattices relevant

to quasicrystallography when preciselyβ is equal to 1+√5
2 (golden meanτ ), to 1+√2, or to

2+ √3, i.e. whenβ is one of the self-similarity ratios observed in quasicrystalline structures.
As a matter of fact,β-integers are natural candidates for coordinating quasicrystalline nodes,
and also the Bragg peaks beyond a given intensity in corresponding diffraction patterns: they
could play the same role as ordinary integers do in crystallography.

In this paper, we prove interesting algebraic properties of the setsZβ whenβ is a ‘quadratic
unit PV number’, a class of algebraic integers which includes the quasicrystallographic cases.
We completely characterize their respective Meyer additive and multiplicative properties

Zβ + Zβ ⊂ Zβ + F ZβZβ ⊂ Zβ +G
where F and G are finite sets, and also their respective Galois conjugate setsZ′β . These
properties allow one to develop a notion of a quasiringZβ . We hope that in this way we
will initiate a sort of algebraic quasicrystallography in which we can understand quasilattices
which be ‘module on a quasiring’ inRd : 3β =

∑
i Zβei . We give also some two-dimensional

examples withβ = τ .

1. Introduction

Studies on physical and mathematical properties of deterministic aperiodic structures
have recently been very intensive, strongly motivated by the experimental discovery of
quasicrystals (see [18, 19, 36]).

In this context, quasilattices can be defined as mathematical discrete sets supporting
atomic sites in quasiperiodic material structures such as quasicrystals. They play the same
role as the lattices do for crystals. Various interesting definitions of quasilattices have been
proposed in the past, dating back to 1984 with the discovery of the first quasicrystalline
alloy. Most of these definitions are of geometrical nature, sticking to crystalline lattice
theory through the celebrated cut and project method (see [33]), or issued from involved
packing construction in real spacelike the generalized dual method [24, 34]. More ‘algebraic’
approaches were initiated, by several authors (see for instance [1, 2]). Recent school or
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workshop proceedings give a good account of this original interactive field mixing number
theory, lattices and experimental physics (see [26, 28] for instance).

It has also been acknowledged that most of the algebraic and functional approaches to
quasilattices, e.g. the cut and project method and involved Fourier analysis, should mention
pioneer results obtained more than 25 years ago by Meyer [25, 26]. The notion of a
quasilattice3 ⊂ Rd proposed by Meyer rests upon the idea that the quasilattice should be
‘almost’ closed under subtraction

3−3 ⊂ 3+ F (1)

whereF is some finite set. For most of such quasilattices3 should follow from (1) well-
controlled properties for their diffraction spectrum, but it is not true in general (as Lagarias
has shown [22, 23]).

On the other hand, one can deal with lattice internal laws within an equivalence class of
quasilattices which differ from each other by the addition of finite sets. For the definition
and application of a Meyer set in the problem of finite generation of quasilattices, we refer
to [28]. Some authors use the name ‘quasicrystal’ to designate the structures they build
in R2 andR3. We here prefer the generic term ‘quasilattice’, since certain real material
structures are called quasicrystal.

An interesting algebraic definition of quasilattices [5, 27] was introduced more than five
years ago by Moody and Patera, and their possible symmetry groups and semi-groups have
been investigated [3, 4, 31]. More recently, one of us [12–16] suggested studying algebraic
models of quasilattices based on countable sets of numbers, denoted byZβ , and namedβ-
integers, whereβ is some real number. These quasilattices3β are scaling invariant under
dilation by β > 1, andZβ is precisely the counting system with origin, i.e. the numerical
frame, in which we should think about structural properties of3β , exactly like the first
crystallographers did with lattices and ordinary integers.

As a matter of fact, these setsZβ are natural candidates for coordinating quasicrystalline
nodes in one, two or three dimensions, and also the Bragg peaks in related diffraction patterns
[9, 17]. In the observed cases:

β = τ = 1+√5

2
= 2 cos

π

5
(penta or decagonal quasilattices) (2)

β = γ = 1+
√

2= 1+ 2 cos
π

4
(octogonal case) (3)

β = δ = 2+
√

3= 2+ 2 cos
π

12
(dodecagonal case). (4)

Generically, Zβ is obtained by means of a finite algorithm whereβ is a Pisot–
Vijayaraghavan numberor more simply Pisot number, i.e. an algebraic integerβ > 1,
which is solution to the irreducible polynomial of the form

Xm = am−1X
m−1+ · · · + a1X + a0 ai ∈ Z (5)

such that all other solutionsβ(i) of (5) (Galois conjugates ofβ) have modulus strictly smaller
than 1,

β(0) = β |β(i)| < 1 i = 1, 2, . . . , m− 1.

Therefored-dimensional discrete sets of the form

3
def=

d∑
i=1

Zβei where{ei} is a basis inRd , d = 1, 2, 3 (6)

can advantageously play the role of ‘grid frame’ or (‘millimetre paper’ ifd = 2) for
labelling quasicrystalline atomic sites in real space, exactly as integer lattices (Z-modules)
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Figure 1. Penrose quasilattice as a subset of theτ -grid 01 (figure 4).

Figure 2. Diffraction pattern of Penrose quasilattice of figure 1 as a subset of theτ -grid 01.

are appropriate to real crystalline structures. Indeed, it seems that most of the quasilattices
obtained by cut and project [20] or by algebraic ‘filtering’ [27] within the denseZ[β]-
module are supported by sets of the type3. In figures 1 and 2 we give simple demonstrative
examples of such labelling properties.

Thoseβ-integer quasilattices are neither translationally nor rotationally invariant of
course, although they contain rotationally invariant subsets obtained through the cut and
project method. Moreover they still display nice algebraic and geometrical features,
which straightforwardly generalize those for lattices. We already mentioned their similarity
property under scaling byβ:

β3 ⊂ 3
which is due to

βZβ ⊂ Zβ.
We shall eventually see how a concept of a quasiring and modules on a quasiring

emerges from the study of additive and multiplicative properties ofZβ :

Zβ + Zβ ⊂ Zβ +X (7)
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ZβZβ ⊂ Zβ + Y (8)

whereX andY are to be determined in a non-ambiguous way. The aim of this paper is to
present some interesting properties ofβ-integers and to give (partial) answer to (7) and (8).
Motivations were presented in [14]. We here give complete proofs of some results claimed
in [14] and we extend them substantially to more general cases. Of course, we are mainly
concerned by the three quasicrystallographic cases (2)–(4), but we shall also give original
results for general quadratic unit Pisot numbers, namely thoseβ which are solution to

x2 = ax + 1 a ∈ Z, a > 1 (9)

x2 = ax − 1 a ∈ Z, a > 3. (10)

In the next section, we shall present the basic definitions concerningZβ on one hand,
and concerningβ-quasilattices and Meyer sets inRd on the other hand. These definitions
will be followed by a first result about the Meyer property ofZβ whenβ is Pisot.

Section 3 is devoted to the ubiquitous golden meanβ = τ . Indeed icosahedral or
decagonal quasicrystals are among the most stable quasicrystalline phases and the irrational
τ is the simplest Pisot number in many aspects. It is the reason why it deserves a specific
and pedagogical treatment on its own. As a matter of fact, we prove the following:

Zτ + Zτ ⊂ Zτ
τ 2
⊂ Zτ +

{
0,±1

τ
,± 1

τ 2

}
ZτZτ ⊂ Zτ

τ 2
⊂ Zτ +

{
0,±1

τ
,± 1

τ 2

}
.

In section 4, we give precise inclusions for general quadratic unit Pisotβ of the type
(9), (10), and these results are also new. In section 5, we discuss the notion of quasiring
structure which emerges from our results. In particular we show how the existence of
a quasiaddition as an internal laẇ+ for Zβ allows one to generate the whole set in an
inductive way, starting from the ‘seed’{−1, 1}. Finally, in section 6 we shall consider
τ -quasilattices in the plane, of the form (6), in order to give a pedagogical insight of the
importance ofZβ in quasicrystalline studies.

2. Delaunay–Meyer sets,β-expansions andβ-integers

A Delaunay set in space is typically a mathematical model for the set of atomic sites in
large material structures. It fills the space in a not too dense and not too discrete manner.
More precisely we define (see [26]) the following.

Definition 2.1.A subset3 of Rd is a Delaunay setif there exist two radiiR2 > R1 > 0
such that each ball with radiusR1, whatever its location, shall contain at most one point
from3 while each ball with radiusR2, whatever its location, shall contain at least one point
from 3.

A Meyer quasilattice is a Delaunay set which is endowed with arithmetic properties: it
is closed under subtraction modulo a finite set. More precisely we define the following.

Definition 2.2.A Meyer quasilattice3 is a Delaunay set inRd such that

3−3 ⊂ 3+ F (11)

whereF is a finite set inRd .
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In the following we shall mainly deal with sets symmetrical with respect to space
inversion 3 → −3. Such a Meyer quasilattice then obeys3+3 ⊂ 3+ F and it
becomes possible to provide3 with a quasiaddition law whenF is given a non-ambiguous
characterization. Indeed, if we havex, y ∈ 3, x + y = η + f where η ∈ 3, f ∈ F ,
then we definex+̇y = η. This internal law is commutative but not associative. Its natural
framework is the class of equivalent Meyer sets defined in the following way.

Definition 2.3.Two subsets3 and3′ of Rd areequivalent modulo finite setsif there exist
two finite setsF andF ′ such that

3 ⊂ 3′ + F ′ and 3′ ⊂ 3+ F
and we then write3 ∼ 3′.

It is clear that3+3 ⊂ (3+F) ∼ 3 if 3 is a Meyer symmetrical set. If one imposes
a Meyer quasilattice3 to be scaling invariant under dilation byβ > 1:

β3 ⊂ 3 (12)

then β has to be an algebraic integer. More precisely Meyer has proved the following
assertion [25].

Theorem 2.1.If 3 is a Meyer quasilattice, ifβ > 1 is a real number, and if (12) holds true,
thenβ is either a Pisot number or is a Salem number. Conversely, for each dimensiond

and each Pisot or Salem numberβ, there exists a Meyer quasilattice3 in Rd such that
β3 ⊂ 3.

We recall that aSalem numberβ = β(0) is an algebraic integerβ > 1 such that all
algebraic conjugatesβ(i), i > 0, lie within the closed unit disk and at least one of them lies
on the unit circle.

Our construction of (possible) quasilattices has something to do with this remarkable
connection between a class of algebraic integers and self-similarity of discrete subsets in
Rd . For anyβ > 1, there exist countable canonical sets inR which areβ-scaling invariant.
Their construction rests upon notions first introduced by Rényi [32], and later developed in
[7].

Let β be non-integer andβ > 1. Theβ-expansionof an arbitrary positive real number
x is the series(ξl)−∞6l6j such that

x =
j∑

i=−∞
ξiβ

i

wherej is the highest integer such that

βj 6 x < βj+1

the positive integersξl assume their values in the alphabet

{0, 1, 2, . . . , [β]} ([β] is the integer part ofβ)

and are computed by using the so-calledgreedy algorithm. One recursively defines

ξj = [x/βj ] rj = {x/βj } (the fractional part ofx/βj )

and for l < j ξl = [βrl+1], rl = {βrl+1} . . .
finally, if j < 0, we putξ0 = ξ−1 = · · · = ξj+1 = 0.

For brevity we also write

x = ξj ξj−1ξj−2 . . . ξ0.ξ−1ξ−2ξ−3 . . . (e.g. 2= 10.01 whenβ = τ).
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The highest power ofβ appearing in theβ-expansion ofx will be called theβ-degreeof
x and will be denoted by degβ(x), so we havej = degβ(x). When aβ-expansion ends in
infinitely many zeros, it is said to befinite, and the ending zeros are omitted.

We will denote by

int(x) = ξjβj + · · · + ξ0

the ‘integral part’ ofx and by

frac(x) = ξ−1β
−1+ ξ−2β

−2+ · · ·
the ‘fractional’ part ofx.

The set of real numbers which have a zero fractional part in theirβ-expansion is named
set ofβ-integersand is denoted by

Zβ
def= {±(ξjβj + ξj−1β

j−1+ · · · + ξ1β + ξ0)} = Z+β ∪ (−Z+β )
whereZ+β designates the set of non-negativeβ-integers.

Some configurationsξj ξj−1 . . . ξl . . . in the above definition are not possible. What is
allowed and what is forbidden in the set ofβ-expansions is completely determined by what
is called theRényiβ-expansion of 1:

d(1, β) = t1β−1+ t2β−2+ · · ·
= 0.t1t2 . . . tl · · ·

where tl ∈ {0, 1, . . . , [β]}. This expansion is reminiscent of the identity 1= 0.99. . .9 . . .
in the decimal system. It is obtained by the following process:

t1 = [β] r1 = {β} . . . , tl = [βrl−1] rl = {βrl−1} . . .
or, equivalently,

tl = [βT l−1
β (1)]

where

Tβ(x) = βx (mod 1).

In this context, note that the greedy-algorithm coefficientξl of a real numberx ∈ [0, 1) is
also equal to

ξ−l = [βT l−1
β (x)].

We then have theβ-expansion rule [29].

Proposition 2.2.No infinite sequence of positive integers is present in anyβ-expansion if
itself and all its (one-sided) shifted are lexicographically larger than or equal to:

t1t2 . . . if the latter is infinite

and to:

(t1t2 . . . tm−1(tm − 1))ω if d(1, β) = 0.t1t2 . . . tm−1tm is finite.

( )ω means that the word within( ) is indefinitely repeated.

Therefore, onced(1, β) is known, it becomes possible (in principle, but it may turn out
to be unpracticable!) to build upZβ by following the lexicographical order of the allowed
sequences.

The countable setZβ is naturally self-similar and symmetrical with respect to the origin:

βZβ ⊂ Zβ Zβ = −Zβ.
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It tiles the line with a finite or infinite number of intervals separating two nearest
neighboursxi < xi+1 with lengths of the tilesli = xi+1 − xi . Now we are concerned by
setsZβ that are Delaunay and possibly Meyer. This is at a certain extent assured for the
two following important results.

Theorem 2.3 ([7]).Suppose thatβ is a Pisot number. Then the Rényi β-expansion of 1 is
eventually periodic,

d(1, β) = 0.t1t2 . . . tm(tm+1 . . . tm+p)ω.

Whenβ is a Pisot number, it follows thatZβ is a self-similar tiling of the line with a
finite set of different tiles. The lengths of the tiles are{T iβ(1), 0 6 i 6 m + p − 1} (see
[37]). More precisely the lengths assume their values in the set

1, β − t1, β2− t1β − t2, . . .
βm+p−1− t1βm+p−2− · · · − tm+p−1.

Hence, ifβ is Pisot, thenZβ is Delaunay, and the radiiR1 andR2 are given by

R1 = min
i
T iβ(1)− ε whereε > 0 is a suitable small number

and

R2 = max
i
T iβ(1) = 1.

Our aim now is to prove that, whenβ is a Pisot number, the setZβ of β-integers is a
Meyer set. We will denote byZ[β] the following extension ring

Z[β] = {m+ nβ|m, n ∈ Z}.
Lemma 2.1.Let R > 0 and let

FR = {frac(z)|z = akβk + · · · + a1β + a0, ai ∈ Z, |ai | 6 R}.
If β is a Pisot number, thenFR is a finite subset ofZ[β].

Proof. Let z =∑−∞6i6j ziβi be theβ-expansion ofz. We have frac(z) =∑i>1 z−iβ
−i =

z − int(z) = ∑k
i=0 aiβ

i − ∑j

i=0 ziβ
i . Since 06 zi 6 [β] and |ai | 6 R, frac(z) is a

polynomial fromZ[β], the coefficients of which are bounded byR + [β]. The lemma is
then a consequence of the fact that frac(z) ∈ [0, 1) and of the following classical result.�

Lemma 2.2 (see [35, lemma 6.6]).Let β be a Pisot number and letR > 0. Then the setFR
is discrete.

Theorem 2.4.Let β > 1 be a Pisot number. Then the setZβ of β-integers is a Meyer set.

Proof. First consider the sum of two elementsx = xkβk + · · · + x0 andy = ylβl + · · · + y0

from Z+β . Thenz = x + y is of the formz = ajβj + · · · + a0, with 0 6 ai 6 2[β]. By
lemma 2.1,F2[β] = {f (z); z ∈ Z+β + Z+β } is finite. Thus

Z+β + Z+β ⊂ Z+β + F2[β] .

Now, suppose thatx > y, and letz = x − y = amβm + · · · + a0,−[β] 6 ai 6 [β]. As
above one obtains

Z+β − Z+β ⊂ Zβ ± F[β] .

�

Finally, let us mention the following result giving more precision about the setZβ+Zβ .
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Theorem 2.5 ([11]).Let β be a Pisot number. There existsL = L(β) having the following
properties. Letx, y ∈ Zβ . If x + y (resp.x − y) has a finiteβ-expansion, then

x + y(resp. x − y) ∈ Zβ/βL.

3. Algebraic properties of the set ofτ -integersZτ

The golden meanτ can be considered as the simplest Pisot number. It is the smallest one
among the totally real (i.e. whose all conjugates are real) Pisot numbers (see [6]). Because
τ and− 1

τ
= τ ′ are solutions to

X2 = X + 1

the Ŕenyi expansion of 1 reads:

d(1, τ ) = 0.11.

This means that noτ -expansion sequenceξj . . . ξ0.ξ−1 . . . ξl . . . displays two adjacent 1’s.
More precisely, any positive real number has aτ -expansion

x =
j∑

l=−∞
ξlτ

l with ξl ∈ {0, 1} andξlξl+1 = 0.

The subset ofR defined by

Zτ
def=
{
x ∈ R|

j∑
i=0

ξiτ
i is theτ -expansion of|x|

}
is the set ofτ -integers. Positiveτ -integers are thus represented by a finite string of 0’s and
1’s, with the condition that no run of two adjacent 1’s occur. It is well known that this
corresponds to the representation of natural numbers in the Fibonacci numeration system
where the Fibonacci numbers are defined by

fn+2
def= fn+1+ fn f1

def= 2 f0
def= 1.

So there is an explicit bijection between integers and theτ -integers (see for instance [8]),

n =
jn∑
i=0

ξifi −→ xn =
jn∑
i=0

ξiτ
i . (13)

Note that properties of Fibonacci representations of natural numbers have been investigated
by many people (see [21]). Anyτ -integer is an element of the algebraic ring

Z[τ ] = {m+ nτ |m, n ∈ Z}.
The latter is actually identical to the set of real numbers which have a finiteτ -expansion
(see [11]).

An interesting question then arises. For what values ofm and n is the combination
m + nτ a τ -integer? In figure 3 we have plotted the lattice points(m, n) in Z2 such that
m+ nτ ∈ Zτ . They are clearly all the lattice points lying within the bands defined by

τx − τ 2 < y < τx + τ
in the first quadrant, and by

τx − τ < y < τx + τ 2
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Figure 3. Zτ -numbers.

in the opposite sign quadrant. Note that the band width isτ 3/
√

1+ τ 2. This ‘inverse’ cut
and project method (see [20]) leads to the following definition of the positive and negative
τ -integers, denoted respectively byZ+τ andZ−τ

Z+τ =
{
m+ nτ |m, n ∈ Z, m, n > 0,−1< m− n

τ
< τ

}
(14)

Z−τ =
{
m+ nτ |m, n ∈ Z, m, n 6 0,−τ < m− n

τ
< 1

}
. (15)

The algebraic meaning of (14) and (15) involves the standard ring automorphism ofZ[τ ],

x = m+ nτ −→ x ′ = m+ nτ ′ = m− n
τ
. (16)

Let us introduce the following ‘sieving’ procedure from [27] in order to select within the
dense ringZ[τ ] a Delaunay subset

6P = {x ∈ Z[τ ]|x ′ ∈ P }
whereP is some bounded subset inR. Then we can check from the above that

Z+τ = positive part of6(−1,τ ) (17)

Z−τ = negative part of6(−τ,1) (18)
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and

6(−1,1) ⊂ Zτ ⊂ 6(−τ,τ ). (19)

The inclusion relations (19) also mean that it is sufficient to sieve from the discrete setZτ
in order to obtain6(−1,1)

6(−1,1) = {x ∈ Zτ |x ′ ∈ (−1, 1)}. (20)

Scaling (19) with arbitrary powers ofτ leads to the interesting chain [12, 14] of embeddings
(see [4] and lemma 4.1 below for an algebraic proof)

6(−τ j ,τ j ) ⊂ Zτ /τ j ⊂ 6(−τ j+1,τ j+1) j ∈ Z. (21)

Let us now turn to the Meyer property of the setZτ . In this specific case, a first estimate
for the finite setF in (11) is given by

F =
{

0,±1

τ
,± 1

τ 2

}
.

However, if we do not think ofZτ + Zτ ⊂ Zτ + F in terms of uniqueτ -expansion, more
precise inclusions exist (see section 4).

In the present content let us now prove the following.

Theorem 3.1.

Zτ + Zτ ⊂ Zτ
τ 2
. (22)

This result restricted to the positive part ofZτ , can be found (with a totally different proof)
in [10].

Proof. We will define for anyN ∈ N, BN = {X ∈ Zτ+|X < τN }. It is easy to see that
BN = τBN−1 ∪ (1+ τ 2BN−2) and the assertion results from the two following lemmas.�

Lemma 3.1.For anyN ∈ N there existsN ′ such that

BN + BN ⊂ τ−2BN ′ . (23)

Proof. ForN = 0 it is trivial and forN = 1 we use only 1+ 1= τ + 1
τ 2 . We suppose that

(23) is valid untilN and forN + 1 we have

BN+1+ BN+1 = (τBN ∪ (1+ τ 2BN−1))+ (τBN ∪ (1+ τ 2BN−1))

= (τBN + τBN) ∪ (1+ τBN + τ 2BN−1) ∪ (2+ τ 2BN−1+ τ 2BN−1)

⊂ τ(BN + BN) ∪ (1+ τ(BN + BN)) ∪ (2+ τ 2(BN−1+ BN−1))

⊂ τ−1BN ′ ∪ (1+ τ−1BN ′) ∪ (2+ B(N−1)′).

In order to complete the proof we need to prove that the following holds true

1+ τ−1BN ⊂ τ−2BN+2 (24)

2+ BN ⊂ τ−2BN+3 (25)

hence for(N + 1)′ we can take max{N ′ + 2, (N − 1)′ + 3}.
By direct calculation we show that (24) is true forN = 0, 1, 2. Furthermore, by

induction and by usingBN+1 = BN ∪ (τN + BN−1) we have

1+ τ−1BN+1 = (1+ τ−1BN) ∪ (τN−1+ 1+ τ−1BN−1)

⊂ τ−2BN+2 ∪ (τN−1+ τ−2BN+1) ⊂ τ−2BN+3.

The proof of (25) is similar. �
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Lemma 3.2.For anyN ∈ N there existsN ′ such that

BN − BN ⊂ ±τ−2BN ′ . (26)

Proof. For N = 0 andN = 1 it is trivial and forN = 2 , we have onlyτ − 1 = 1
τ

. We
suppose that (26) is valid untilN , and forN + 1 we have

BN+1− BN+1 = (τBN ∪ (1+ τ 2BN−1))− (τBN ∪ (1+ τ 2BN−1))

= ± ((τBN − τBN) ∪ (1+ τ 2BN−1− τBN) ∪ τ 2(BN−1− BN−1))

⊂ ± (τ−1BN ′ ∪ (1+ τ 2(BN−1− BN−1))

∪ (1− τ + τ 2(BN−1− BN−1)) ∪ B(N−1)′)

⊂ ± (τ−1BN ′ ∪ B(N−1)′ ∪ (1± B(N−1)′) ∪ (−τ−1± B(N−1)′)).

In order to complete the proof, we have to show that

BN − 1⊂ τ−1BN+1 ∪ {−1} (27)

and

BN − τ−1 ⊂ τ−2BN+2 ∪ {−τ−1}. (28)

For x = 0 and 1 it is obvious and forx > 1, x ∈ BN , we shall take itsτ -expansion

x =
∑N−1

i=k+2
ciτ

i + τ k

and (27) then follows from the two identities

τ k − 1= τ k−1+ τ k−3+ · · · + τ 2+ τ−1 for k > 0 even

τ k − 1= τ k−1+ τ k−3+ · · · + τ for k > 0 odd.

The inclusion (28) is a simple consequence of (27) by using(BN−τ−1) = τ−1(τBN−1). �

Remark 3.1.We can tell more about (22) or (23). It can be shown that for alln,m ∈ Z
there existsf ∈ {0,±(1/τ),±(1/τ 2)} such that

xm+n = xm + xn + f
wheren→ xn ∈ Zτ is the bijection (13).

Remark 3.2.The content of theorem 3.1 means that translational invariance does not hold
for Zτ . We cannot consider each point of the latter as the origin of anotherZτ supporting
and supported by the first one. However, (22) also means that there is ‘almost’ coincidence.
Both sets are equal up to± 1

τ
as it can be guessed from figure 3. Of course the same can

be asserted about all Bravais quasilattices of the type (6).
The second result we want to give concerns the multiplicative properties ofZτ . Indeed

we have the following.

Theorem 3.2.

ZτZτ ⊂ Zτ
τ 2
.
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Proof. We shall show again that, for anyN ∈ N, there is aN? such that

BN × BN ⊂ τ−2BN?. (29)

ForN = 0, 1 it is trivial. We suppose that (29) is valid untilN , and forN + 1 we have

BN+1× BN+1 = (τBN ∪ (1+ τ 2BN−1))× (τBN ∪ (1+ τ 2BN−1))

= τ 2BN × BN ∪ (1+ τ 2BN−1)× τBN ∪ (1+ τ 2BN−1)× (1+ τ 2BN−1)

⊂ BN? ∪ τ(BN + τ 2BN−1× BN) ∪ (1+ τ 2(BN−1+ BN−1)+ τ 4BN−1× BN−1)

⊂ τ−2BN?+2 ∪ τ(BN + BN?) ∪ (1+ B(N−1)′ + τ 2B(N−1)? )

⊂ τ−2BN?+2 ∪ τ−2B(N?)′+1 ∪ (1+ B(N−1)′ + τ 2B(N−1)? )

⊂ τ−2(BN?+2 ∪ B(N?)′+1 ∪ BM ′)
whereM ′, N ′ are from lemma 3.1,M = max{(N − 1)′, (N − 1)?} and for(N + 1)? we can
take(N + 1)? = max{(N?)′ + 1, N? + 2,M ′}. �

4. Algebraic properties ofZβ for β a quadratic unit Pisot

We now address the question of characterizing finite sets appearing in (7) and (8) when
β is a generic quadratic unit Pisot, i.e. is solution to ((9)) or ((10)). Note that the two
quasicrystallographic Pisotγ andδ from (3) and (4) belong to these classes. We could of
course attempt to extend in this more general case the inductive methods we have employed
in the previous section. However, we soon become very puzzled about how to manage
difficulties increasing with the values ofa.

4.1. Case whereβ is the root> 1 of the polynomialx2− ax − 1, a > 1

In that case, the canonical alphabet isA = {0, . . . , a}, the β-expansion of 1 is finite,
d(1, β) = 0.a1, and every positive number ofZ[β] has a finiteβ-expansion [11].

Let ′ be the Galois automorphism′ : β −→ − 1
β

. Recall that ifP is some bounded

subset ofR with non-empty interior,6P denotes the set{z ∈ Z[β]|z′ ∈ P }. We recall that
this algebraic filtering of the denseZ[β] in order to obtain the Delone set6P is equivalent
to thecut and project method[4, 30]. We first have the following.

Lemma 4.1.Let β be the root> 1 of x2− ax − 1, a > 1. Then:

(i) let z ∈ Z[β], z > 0 and let(zi)−m6i6n be theβ-expansion ofz with z−m 6= 0.

If m > 0 thenz 6∈ 6(−1,β), moreover ifz <
1

β
thenz 6∈ 6(−β2,β);

(ii) Z+β = 6(−1,β) ∩ R+, Z−β = 6(−β,1) ∩ R−; (30)

(iii) 6(−1,1) ⊂ Zβ ⊂ 6(−β,β) ⊂ Zβ
β
; (31)

(iv) Zβ +
{

0,± 1

β
, . . . ,± a

β

}
⊂ Zβ
β2
.

Proof.
(i) Recall thatz′ = 6n

i=−m(−1)iziβ−i . Sincezm 6= 0 then by admissibilityz−m+1 6 a−1
and the otherzi ’s are6 a. If m is even,z′ > −a(· · ·+βm−5+βm−3)−(a − 1)βm−1+βm =
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−a βm−1

β2−1 + βm−1 + βm−2 = βm−1, hencez′ 6∈ (−1, β). If m is odd, z′ < a(· · · + βm−5 +
βm−3) + (a − 1)βm−1 − βm = −βm−1, hencez′ 6∈ (−1, β). Note that if 0< z < 1

β
then

m > 2.
(ii) Let z ∈ Z+β and let (zi)06i6n be its β-expansion,z = ∑n

0 ziβ
i and z′ =∑n

0(−1)iziβ−i . From · · · − z3β
−3 − z1β

−1 6 z′ 6 z0 + z2β
−2 + . . . we know that

−1 < z′ < aβ2

β2−1 = β. HenceZ+β ⊂
∑(−1,β) ∩R+. Conversely, letz > 0, z ∈ Z[β]

such thatz′ ∈ (−1, β) then it follows from (i) that theβ-expansion ofz has the form
(zi)−m6i6n, wherem has to be> 0, hencez ∈ Z+β .

(iii) The proof is a direct consequence of (ii).

(iv) It is easy to see thatZ+β + {0, 1
β
, . . . , a

β
} ⊂ 6(−β2,β) ⊂ Z+β

β2 . On the other hand,

taking any non-zeroz ∈ Z+β , we know thatz > 1. By using the inequalityβ + aβ < β3 we

can assert thatz− {0, 1
β
, . . . , a

β
} ⊂ 6(−1,β3) ∩ R+ ⊂ Z+β

β2 . �

Proposition 4.1.Let β be the root> 1 of x2− ax − 1, a > 1. Then

Zβ + Zβ ⊂ Zβ +
{

0,± 1

β

}
⊂ Zβ
β2
.

Proof. Pick anyx, y ∈ Z+β , then z = x + y ∈ Z[β], with z > 0, hencez′ ∈ (−2, 2β).
If z′ ∈ (−1, β), then lemma 4.1(ii) gives us thatz ∈ Z+β . If z′ ∈ [β, 2β), then we define

g = z + 1
β

which fulfils g > 0, g′ = z′ − β ∈ [0, β). Again, by using the previous lemma

we have thatg ∈ Z+β and soz = g − 1
β
∈ Z+β − 1

β
. Similarly, if z′ ∈ (−2,−1] thenz > 1

and we define a positive numberg = z − 1
β

with g′ = z′ + β ∈ (−1, β) which is inZ+β .

Hence we see thatz = g + 1
β
∈ Z+β + 1

β
.

Pick anyx, y ∈ Z+β , such thatz = x−y > 0, hencez′ ∈ (−1−β, 1+β). If z′ ∈ (−1, β)

thenz ∈ Z+β . If z′ ∈ [β, 1+ β), theng = z + 1
β

fulfils g > 0, g′ = z′ − β ∈ (0, 1), hence

z = g − 1
β
∈ Z+β − 1

β
. If z′ ∈ (−1− β,−1] ⊂ (−β2, β) then we apply lemma 4.1(i) and

we get thatz > 1
β

. We can define a nonnegative numberg = z− 1
β
, g′ = z′ + β ∈ (−1, β)

which is inZ+β . Hencez = g + 1
β
∈ Z+β + 1

β
. Other cases are symmetrical. �

Proposition 4.2.Let β be the root> 1 of x2− ax − 1, a > 1. Then

Zβ × Zβ ⊂ Zβ +
{

0,± 1

β
, . . . ,± a

β

}
⊂ Zβ
β2
.

Proof. Pick any x, y ∈ Zβ such thatz = xy > 0. From lemma 4.1(ii) we get that
z′ ∈ (−β, β2). If z′ ∈ (−1, β), then z ∈ Z+β . If z′ ∈ (−β,−1], we apply lemma 4.1(i)

and we get thatz > 1
β

. We define a non-negativeg = z − 1
β

with g′ = z′ + β ∈ (0, β)
which is in Z+β , hencez = g + 1

β
∈ Z+β + 1

β
. If z′ ∈ [(k − 1)β, kβ), k ∈ {2, . . . , a},

then g = z + k−1
β

fulfils g > 0, g′ ∈ [0, β) and sog ∈ Z+β . So we can rewritez as

z = g − k−1
β
∈ Zβ − k−1

β
. If z′ ∈ [aβ, β2 = aβ + 1), we put g = z + a

β
. Then

g > 0, g′ ∈ (0, 1) andz ∈ Z+β − a
β

. Finally, for x, y ∈ Zβ such thatz = xy < 0, we know

from the above that−z ∈ Z+β + {0,± 1
β
, . . . ,± a

β
}. �
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4.2. Case whereβ is the root> 1 of the polynomialx2− ax + 1, a > 3

The canonical alphabet isA = {0, . . . , a− 1}, theβ-expansions of 1 is eventually periodic,
d(1, β) = 0.(a−1)(a−2)ω, and every number ofZ+[β] (the cone of first degree polynomials
in β with non-negative integer coefficients) has a finiteβ-expansion [11].

The interesting fact is that, ifz ∈ Z+β and itsβ-expansion isz = ∑k
i=0 ziβ

i , then the

β-expansion of(z)′ ( ′ is the Galois automorphismβ −→ 1
β

) is (z)′ = ∑0
i=−k ziβ

i where
zi = z−i .
Lemma 4.2.Let β be the root> 1 of x2− ax + 1, a > 3 andz ∈ Z[β] ∩ R+. Then

(i) z has a finiteβ-expansion if and only ifz′ ∈ (0,∞)
(ii) Z+β = 6[0,β) ∩ R+ andZ−β = 6(−β,0] ∩ R− (32)

(iii) Zβ ⊂ 6(−β,β) ⊂ Zβ +
{

0,± 1

β

}
. (33)

Proof.
(i) If 0 < z = ∑n

−m ziβ
i, wherem, n ∈ N, zi > 0, thenz′ = ∑n

−m ziβ
−i > 0. If

z = cβ + d > 0, c, d ∈ Z, z′ ∈ (0,∞), thenc/β + d > 0 andc + dβ > 0.
• If c, d > 0, thenz is inZ+[β], and due to [11] we know thatz has a finiteβ-expansion.
• Let c < 0, d > 0. Since there existsl ∈ N such thatβl−1 6 −c < βl , there exists

k ∈ N, k 6 l such thatβkz ∈ Z+[β]. To find such ak, we carry out the followingprocedure.
From z = cβ + d > 0 andβ = a − 1/β, it follows that ca + d > c

β
. If (ca + d) > 0,

then βz = (ca + d)β − c ∈ Z+[β]. Otherwiseβz = c1β + d1 > 0, c1 < 0, d1 > 0 and
c1a + d1 >

ca+d
β

> c
β2 . Since c

βl
> −1, it follows that there exists ak 6 l such that

βkz ∈ Z+[β] and this implies thatz has a finiteβ-expansion.
• Let c > 0, d < 0. The previous case implies thatβz′ = dβ + c > 0 has a finite

β-expansion and soz has a finiteβ-expansion.
(ii) Let z ∈ Z+β and let{zi}n0 be itsβ-expansion. We havez′ = z0+z1β

−1+· · ·+znβ−n.
Since(zi)06i6n is aβ-expansion, we havezn . . . z0 6lex (a−1)(a−2) . . . (a−2), where6lex
denotes the lexicographic ordering. In fact, it is easy to see that the forbidden blocks are
of the form(a−1)(a−2) . . . (a−2)(a−1), thus if zn . . . z0 is aβ-expansion thenz0 . . . zn
is aβ-expansion as well. From this it follows that 06 z′ = z0+ z1β

−1+ · · · + znβ−n < β.
Conversely, letz > 0, z ∈ Z[β] such thatz′ ∈ [0, β). From (i) we know that theβ-expansion
of z is finite, z = ∑n

−m ziβ
i, z−m 6= 0, m, n ∈ N. If m = 0, thenz ∈ Z+β . If m 6= 0, then

z = ∑n
0 ziβ

i +∑−1
−m ziβ

i , andz′ = ∑n
0 ziβ

−i +∑−1
−m ziβ

−i , where 06
∑n

i=0 ziβ
−i < β.

Sincez−m 6= 0 we have
∑−1
−m ziβ

−1 > βm and hencez′ 6∈ [0, β). Thereforem = 0. Hence
Z+β = 6[0,β) ∩ R+. The proof ofZ−β = 6(−β,0] ∩ R− is similar.

(iii) The first inclusion is a direct consequence of (ii). Letz ∈ 6(−β,β). If z > 0 and
z′ ∈ [0, β), thenz ∈ Z+β by (i). If z > 0 andz′ ∈ (−β, 0), thenz′+β = (z+ 1

β
)′ ∈ (0, β) and

z+ 1
β
> 0. Thus by (i),z+ 1

β
∈ Z+β andz ∈ Z+β +{− 1

β
}. The casez < 0 is symmetrical.�

Proposition 4.3.Let β be the root> 1 of x2− ax + 1, a > 3. Then

(i) Z+β + Z+β ⊂
Z+β
β
,

(ii) Z+β − Z+β ⊂ Zβ +
{

0,± 1

β

}
.
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Proof.
(i) Using the fact, thatβ > 2 and lemma 4.2(ii), we find that

Z+β + Z+β ⊂ 6(0,2β) ⊂ Z
+
β

β
.

(ii) In general the difference of two positiveβ-integers may have an infinite eventually
periodicβ-expansion. For instance, theβ-expansion ofβ − 1 is equal to(a − 2)(a − 2)ω.
Nevertheless,Z+β − Z+β ⊂ 6(−β,β) ⊂ Zβ + {0,± 1

β
} by lemma 4.2(iii). �

Proposition 4.4.Let β be the root> 1 of x2− ax + 1, a > 3. Then

Zβ × Zβ ⊂ Zβ
β
.

Proof. Let x, y ∈ Z+β andz = xy > 0. Sincex ′ andy ′ ∈ [0, β), z′ = x ′y ′ ∈ [0, β2). Then
z′
β
= (βz)′ ∈ [0, β) and by lemma 4.2(ii),βz ∈ Z+β , hencez ∈ Z+β

β
. �

Final remark. Note again (see also (17)–(19)) that the above results (30)–(33) concerning
inclusion of sets are crucial for understanding the labelling role played by theseβ-integers,
as we particularly stressed in the introduction.

5. Quasiring structures and modules on quasirings

We wish here to emphasize a mathematical aspect that emerges from discrete structures that
we have described in this paper. Precisely this concept of equivalence classes of Meyer
quasilattices and related additive and multiplicative laws. We first consider our simplest
example of a Meyer quasilattice, i.e. the set ofτ -integersZτ . Let us restrict the Meyer
definition of equivalence modulo finite sets to theseF ’s that are finite subset of the ring
Z[τ ]. Clearly we still have

Zτ + Zτ = Zτ (modF) ZτZτ = Zτ (modF)

or, equivalently, in terms of equivalence classes

Żτ = {Zτ + F ;F ⊂ Z[τ ] finite}
Żτ + Żτ = Żτ Żτ Żτ = Żτ .

If we concentrate on the elements ofZτ as representatives of the elements of the
set Żτ , the above laws induce the following ones on theτ -integers. If x + y =
η + f, f ∈ F = {0,± 1

τ
,± 1

τ 2 } we shall write x+̇y = η, and similarly x×̇y = θ , if
xy = θ + g, g ∈ F. The mathematical definition of this precisely relies upon theτ -
numeration system and is clearly non-ambiguous: ifx, y ∈ Zτ , and

|x + y| =
∑k

−2
ciτ

i |xy| =
∑k

−2
diτ

i (34)

then

x+̇y = sign (x + y)
∑k

0
ciτ

i x×̇y = sign (xy)
∑k

0
diτ

i . (35)

Therefore+̇ and×̇ map fromZτ × Zτ ontoZτ .
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Despite this evidence of strong departure from a ring structure, we shall adopt the term
quasiring structure. Similarly, any quasilattice of the type (6) inRd will be said to be
endowed with the structure of a module on the quasiringZτ . The reason lying behind this
choice of terminology is our conviction that structural properties of3 are very close to
that ofZ-modules. For instance, it is well known that lattices are the orbit of themselves
considered as a symmetry group acting on a finite subset. We have something similar to the
quasiringZτ . Using the mappinġ+ it is easy to build upZτ from a ‘seed’ set similar to
the crystal case. The starting set isZ0

τ = {0}. We denote0 = {±1} and putZk+1
τ = Zkτ +̇0.

ThenZτ =
⋃∞
k=0Zkτ , i.e. anyx ∈ Zτ , can be reached from the starting point 0 through a

finite number of quasiadditions involving elements in0. In this sense0 can be considered
as a ‘growth set’. The interpretation of that fact in the Fibonacci numeration system is the
successor function, which maps the Fibonacci representation of the natural numbern onto
the Fibonacci representation ofn+ 1. Actually, we have a similar result for any quadratic
unit Pisot numbers.

As for (34) and (35) we define lawṡ+, −̇, ×̇ by truncating theβ-expansion ofx + y,
x−y, xy respectively, after the radix point. By the previous results, we know that fractional
parts (i.e. parts after radix point) of theseβ-expansions belong to finite sets. More precisely,
if (ci)−∞6i6k is theβ-expansion of|x + y|, then

x+̇y = sign(x + y)
k∑
i=0

ciβ
i .

If (ci)−∞6i6k is theβ-expansion of|x − y| then

x−̇y = sign(x − y)
k∑
i=0

ciβ
i .

And if (ci)−∞6i6k is theβ-expansion of|xy| then

x×̇y = sign(xy)
k∑
i=0

ciβ
i .

Proposition 5.1.Let β be a quadratic unit Pisot, and let0 = {±1}. Then

Zβ = ∪k>0Zkβ whereZ0
β = {0} andZk+1

β = Zkβ+̇0.

Proof. By construction we know that∪k>0Zkβ ⊂ Zβ . On the other hand assume that

S = {|x| ∈ Z+β |x ∈ Zβ, x 6∈ ∪k>0Zkβ} 6= ∅. (36)

We pick the minimum of the setS, smin = min{x ∈ S}. We note thatsmin > 1 and we
distinguish two possible cases.
• Let β be the root> 1 of x2 = ax + 1, a > 1. By using lemma 4.1(ii) we

know that s ′min ∈ (−1, β). Hence if s ′min ∈ (0, β) then (smin − 1)′ ∈ (−1, β − 1) hence
(smin−1) ∈ Z+β . Sincesmin is the minimum of the setS, we know that(smin−1) ∈ ∪k>0Zkβ
and sosmin = (smin − 1)+̇1 ∈ ∪k>0Zkβ , which is a contradiction. On the other hand, if

s ′min ∈ (−1, 0) then (smin − 1
β
)′ ∈ (−1+ β, β) and so(smin − 1

β
) ∈ Z+β . Sincesmin is the

minimum of the setS, (smin − 1
β
) ∈ ∪k>0Zkβ . The fact thats ′min ∈ (−1, 0) entails that the

β-expansion ofsmin is of the form smin =
∑j

i=1 ziβ
i . Then we see thatβ-expansion of

(smin− 1
β
+ 1) is equal to

∑j

i=1 ziβ
i + a−1

β
+ 1

β2 and sosmin = (smin− 1
β
)+̇1 ∈ ∪k>0Zkβ . So

we get again a contradiction with (36).
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• Let β be the root> 1 of x2 = ax − 1, a > 3. Here, similarly to the previous
case, we show the contradictionsmin ∈ ∪k>0Zkβ . By using lemma 4.2(ii) we know that
s ′min ∈ (0, β). If s ′min ∈ (1, β) then (smin − 1)′ ∈ (0, β − 1) hence(smin − 1) ∈ ∪k>0Zkβ and

so smin = (smin− 1)+̇1 ∈ ∪k>0Zkβ . Next, if s ′min ∈ (0, 1), then(smin− 1+ 1
β
)′ ∈ (−1+β, β)

hencesmin = (smin− 1+ 1
β
)+̇1 ∈ ∪k>0Zkβ . �

We have here two internal commutative laws which are not associative, and
distributivity does not hold eitherx+̇(y+̇z) 6= (x+̇y)+̇z, x×̇(y×̇z) 6= (x×̇y)×̇z and
x×̇(y+̇z) 6= (x×̇y)+̇(x×̇z). For instance(τ 2+ 1)×̇(1+̇(τ 2+ 1)) = τ 5+ τ 3, whereas
(τ 2+ 1)+̇((τ 2+ 1)×̇(τ 2+ 1)) = τ 5+ τ 3+ 1.

The non-associativity and non-distributivity are encoded by the range of values assumed
by the three following maps fromZβ × Zβ × Zβ into Zβ . Additive associator

[x, y, z]+ = ((x+̇y)+̇z)−̇(x+̇(y+̇z)) ∈ F+.
One conjectures that the above setF+ is simply equal to{±1}. Multiplicative associator

[x, y, z]× = (x×̇y)×̇z−̇x×̇(y×̇z) ∈ X×
and distributor

[x, y, z] ×+ = x×̇(y+̇z)−̇(x×̇y−̇x×̇z) ∈ X×+ .
The two setsX are not finite and a systematic rescaling of these associator and distributor
in function of degβ(x), degβ(y) and degβ(z), is certainly needed here in order to get finite
sets.

6. Five-fold quasilattices in the plane and in space

d-dimensional discrete sets of the form (6) can be built on theβ-integersZτ :

3 =
d∑
i=1

Zτ ei

where {ei} is a set ofd linearly independent vectors.3 is a Meyer quasilattice by
construction. More precisely we have

3 = −3 and 3−3 ⊂ 3+ F ⊂ 3/τ2.

The set3 is self similar

τ3 ⊂ 3
and from theorem 3.2. we have that

Zτ3 ⊂ 3+ F ⊂ 3/τ 2.

Generically, the vectorsei ’s have distinct arbitrary directions inRd . Five-fold or ten-fold
symmetries appear as locally possible if those directions are appropriately chosen. This is
due to the ‘cyclotomic’ nature of the golden mean

τ = 2 cos
π

5

1

τ
= τ − 1.

By this way we can introduce in the complex plane ‘canonical’τ -quasilattices orτ -grids:

0q
def= Zτ + Zτ ζ q whereζ = e

iπ
5 andq = 1, 2, 3 or 4.
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Figure 4. τ -grid 01.

Theτ -grids01, 02 are shown in figures 4 and 6. Thoseτ -grids are not rotationally invariant
with respect to the origin. However, they are almost so. This is clear from the relation

ζ 2 = τζ − 1. (37)

For instance, we have from theorem 3.1.

ζ01 = Zτ + (Zτ + τZτ )ζ ⊂ 01+
{

0,±1

τ
,± 1

τ 2

}
ζ

and similar inclusions for0q .
In order to see how theseτ -grids are obtained by the cut and project method, we

calculate their respective algebraically conjugate sets within the ring generated byτ andζ ,
which is actually the cyclotomic ringZ[ζ ]

Z[τ ] + Z[τ ]ζ ≡ Z[ζ ]. (38)

The standard automorphism (16) inZ[τ ] induces the following one in (38)

℘ = x + yζ −→ ℘∗ = x ′ + y ′ζ ∗
with

ζ ∗ = ζ 3. (39)

Equation (39) is indeed consistent with

ζ + ζ = τ → τ ′ = −1

τ
= ζ ∗ + ζ ∗

and note that (39) is of order 4 since

(ζ ∗)∗ = ζ . (40)

From (40) and (19)–(21) we have

Z[τ ] ∩ (−1, 1)+ (Z[τ ] ∩ (−1, 1))ζ 3 ⊂ 0∗1 ⊂ Z[τ ] ∩ (−τ, τ )+ (Z[τ ] ∩ (−τ, τ ))ζ 3.

In figure 5 we see that0∗1 fills the τ -rhombusRτ = (−τ, τ ) × (−τ, τ )e3iπ
5 , but the

equality

Z[ζ ] ∩ P = 0∗1 ∩ P
holds only for the smaller rhombusP ≡ R1.
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Figure 5. Algebraic conjugate0∗1 of the τ -grid 01.

Figure 6. τ -grid 02.

This corresponds to different rhombic windows in the perpendicular plane along which
theZ4-lattice points are projected onto01 (up to a 3π

5 rotation). These windows are shifted
with respect to each other in order to make01 symmetrical with respect to the origin.
The grid0q has subsets invariant with respect to 36◦-rotations about the origin. We have
different possibilities to build up such sets (up to a scaling byτ k). We can consider for
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Figure 7. Algebraic conjugate0∗2 of the τ -grid 02.

instance unions of grids0q

6q
def=

4⋃
j=0

ζ j0q for q = 1, 2, 3, 4

and better, we can ‘force’ the 10-fold symmetry in a cyclotomic way by introducing the set

Zτ [ζ ]
def=

4∑
j=0

ζ jZτ (41)

with self-explanatory notations. Note that we could have also chosenζ 2 = e
2iπ
5 from the

fact thatζ 6 = −ζ , ζ 8 = −ζ 3, andZτ = −Zτ , and so

Zτ [ζ 2] = Zτ [ζ ].

Clearly

ζ6q = 6q for q = 1, 2, 3, 4 andζZτ [ζ ] = Zτ [ζ ].

Those sets also have nice algebraic properties:

Proposition 6.1.The sets30
def= Zτ [ζ ] and 3q

def= 6q , whereq = 1, 2, 3, 4, are Meyer
quasilattices. In particular,30 is characterized by:

30+30 ⊂ 30+ F0 whereF0 = F + Fζ (42)

and

F =
{
x ∈ R|x =

6∑
j=0

ξj τ
−j , with ξj ∈ {0, 1} andξj ξj+1 = 0

}
. (43)

Proof.
(i) We have to prove that the3q is, for q ∈ {0, 1, 2, 3, 4}, a Delaunay set. By using

formula (37) and theorem 3.1, we obtain the following inclusions

30 ⊂ Zτ + Zτ + τ(Zτ + Zτ )+ ((Zτ + Zτ )+ τ(Zτ + Zτ ))ζ ⊂ Zτ /τ 4+ Zτ /τ 4ζ = 01/τ
4

(44)

and

3q ⊂ (Zτ + Zτ )+ (Zτ + Zτ )ζ ⊂ Zτ /τ 2+ (Zτ /τ 2)ζ = 01/τ
2 for q = 1, 2, 3, 4
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Figure 8. Quasicyclotomic ringZτ [e
iπ
5 ].

i.e. each3q is embedded in a thinner ‘τ -grid’ which has of course the Delaunay property.
On the other hand each of those3q contains a looserτ -grid (for example01 ⊂ 30),

which is also Delaunay. From this fact it follows that the3q ’s, q ∈ {0, 1, 2, 3, 4}, are
Delaunay sets.

(ii) There exists a finiteFq such that3q−3q = 3q+3q ⊂ 3q+Fq , q ∈ {0, 1, 2, 3, 4}.
At first we prove (ii) for30. From (44) we have that

30+30 ⊂ 01/τ
4+ 01/τ

4 ⊂ 01/τ
6

then by using

Zτ /τ 6 ⊂ Zτ + F
whereF is defined in (43) we get (42). Similarly, it is obvious that3q , for q ∈ {1, 2, 3, 4},
is a Meyer quasilattice. �

Note that we could also prove the same for the 10-fold set
⋃4
q=16q. The ‘quasi-

cyclotomic’ ringZτ [ζ ] that we have introduced in (41) has aesthetic nice properties which
can be seen in figure 8. Its algebraic conjugate set is displayed in figure 9. The double
decagonal nature originates from the property (19). One can assert that

D1 ∩ Z[ζ ] = D1 ∩ (Zτ [ζ ])∗ whereas(Zτ [ζ ])∗ ⊂ D2τ 2 ∩ Z[ζ ]

whereDα is the decagon with radiusα and centred at the origin.
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Figure 9. Galois conjugate of the quasicyclotomic ringZτ [e
iπ
5 ].

The existence of the symmetric Delaunay setZτ [ζ ] within the dense ringZ[ζ ] is
reminiscent of the discrete reduction of the cyclotomic ring

Z[e
2iπ
n ] =

n−1∑
q=0

Ze
2iqπ
n = Z+ Ze

2iπ
n

whenn = 1, 2, 3, 4 and 6, i.e. whenn is crystallographic. In this case, replacingZ by Zτ
leads to something similar:

Zτ + Zτe
iπ
5 ⊂ Zτ [e

iπ
5 ] ⊂ (Zτ + Zτe

iπ
5 )/τ 4.

For other non-crystallographicn it would be necessary to find an appropriate Pisot-
cyclotomic numberβ (see [14]).β = γ = 1+√2 andβ = δ = 2+√3 from (3), (4) are
such examples.

We wish to close this section by mentioning the three-dimensional version of the0q ’s
andZτ [ζ ]. These sets seem to be fundamental for quasicrystals and they are fully described
in [4]. Some insights are just given here.

A canonical three-dimensionalτ -grid is given by

0 = Zτα+ Zτβ + Zτγ
whereα,β andγ are position vectors of three five-fold icosahedron vertices forming an
equilateral triangle . For instance,

α = 1

2

(
1,

1

τ
, 0

)
β = 1

2

(
0, 1,

1

τ

)
γ = 1

2

(
1

τ
, 0, 1

)
.

Again we can force the structure in order to have a complete five-fold symmetry by
considering the set

6∑
i=1

Zτ Eαi (45)

when the sum runs on half of the set of all icosahedron vertices. By construction the set
algebraically conjugate to (45) will densely fill a contracted icosahedron in space.
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