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Abstract. Recently, discrete sets of numbers, thdéntegersZg, have been proposed as
numbering tools in quasicrystalline studies. Indeed, there exists a unique numeration system
based on the irrationgd > 1 in which the 8-integers are all real numbers with no fractional
part. Theses-integers appear to be quite appropriate for describing some quasilattices relevant
to quasicrystallography when precisedyis equal to”TJg (golden mearr), to 1+ +/2, or to
2+ /3, i.e. wheng is one of the self-similarity ratios observed in quasicrystalline structures.
As a matter of factS-integers are natural candidates for coordinating quasicrystalline nodes,
and also the Bragg peaks beyond a given intensity in corresponding diffraction patterns: they
could play the same role as ordinary integers do in crystallography.

In this paper, we prove interesting algebraic properties of theZsetsheng is a ‘quadratic
unit PV number’, a class of algebraic integers which includes the quasicrystallographic cases.
We completely characterize their respective Meyer additive and multiplicative properties

Z/g+Z/3CZ/3+F Zng/gCZﬁ+G

where F and G are finite sets, and also their respective Galois conjugateZﬁgtsThese
properties allow one to develop a notion of a quasirilyly We hope that in this way we
will initiate a sort of algebraic quasicrystallography in which we can understand quasilattices
which be ‘module on a quasiring’ iR? : Ag = Y"; Zge;. We give also some two-dimensional
examples with = 7.

1. Introduction

Studies on physical and mathematical properties of deterministic aperiodic structures
have recently been very intensive, strongly motivated by the experimental discovery of
guasicrystals (see [18, 19, 36]).

In this context, quasilattices can be defined as mathematical discrete sets supporting
atomic sites in quasiperiodic material structures such as quasicrystals. They play the same
role as the lattices do for crystals. Various interesting definitions of quasilattices have been
proposed in the past, dating back to 1984 with the discovery of the first quasicrystalline
alloy. Most of these definitions are of geometrical nature, sticking to crystalline lattice
theory through the celebrated cut and project method (see [33]), or issued from involved
packing construction in real spacelike the generalized dual method [24, 34]. More ‘algebraic’
approaches were initiated, by several authors (see for instance [1, 2]). Recent school or
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workshop proceedings give a good account of this original interactive field mixing number
theory, lattices and experimental physics (see [26, 28] for instance).

It has also been acknowledged that most of the algebraic and functional approaches to
guasilattices, e.g. the cut and project method and involved Fourier analysis, should mention
pioneer results obtained more than 25 years ago by Meyer [25, 26]. The notion of a
quasilatticeA ¢ R? proposed by Meyer rests upon the idea that the quasilattice should be
‘almost’ closed under subtraction

A—ACA+F 1)

where F' is some finite set. For most of such quasilattieeshould follow from (1) well-
controlled properties for their diffraction spectrum, but it is not true in general (as Lagarias
has shown [22, 23]).

On the other hand, one can deal with lattice internal laws within an equivalence class of
guasilattices which differ from each other by the addition of finite sets. For the definition
and application of a Meyer set in the problem of finite generation of quasilattices, we refer
to [28]. Some authors use the name ‘quasicrystal’ to designate the structures they build
in R? and R®. We here prefer the generic term ‘quasilattice’, since certain real material
structures are called quasicrystal.

An interesting algebraic definition of quasilattices [5, 27] was introduced more than five
years ago by Moody and Patera, and their possible symmetry groups and semi-groups have
been investigated [3, 4, 31]. More recently, one of us [12—-16] suggested studying algebraic
models of quasilattices based on countable sets of numbers, denofed agd namegs-
integers whereg is some real number. These quasilattidgsare scaling invariant under
dilation by 8 > 1, andZ;g is precisely the counting system with origin, i.e. the numerical
frame, in which we should think about structural propertiesAgf, exactly like the first
crystallographers did with lattices and ordinary integers.

As a matter of fact, these sefg are natural candidates for coordinating quasicrystalline
nodes in one, two or three dimensions, and also the Bragg peaks in related diffraction patterns
[9, 17]. In the observed cases:

1 5 .
B=1= +2\/_ =2 cos% (penta or decagonal quasilattices) (2)
B=y=1+ V2=1+2 cos% (octogonal case) 3
B=8=2++3=242 005112 (dodecagonal case). 4)

Generically, Zg is obtained by means of a finite algorithm whepe is a Pisot—
Vijayaraghavan numbeior more simply Pisot number, i.e. an algebraic integer 1,
which is solution to the irreducible polynomial of the form

X" =a, 1 X" T+ +aX +ap a; € Z ®)

such that all other solutiong?) of (5) (Galois conjugates g¢f) have modulus strictly smaller
than 1,

O =g 189 <1 i=12...,m—1
Therefored-dimensional discrete sets of the form

d
A dzefZZ,ge,- where{e;} is a basis inR?,d = 1,2, 3 (6)
i=1

can advantageously play the role of ‘grid frame’ or (‘millimetre paperdif= 2) for
labelling quasicrystalline atomic sites in real space, exactly as integer latie@®dules)
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Figure 1. Penrose quasilattice as a subset of thgrid I'; (figure 4).
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Figure 2. Diffraction pattern of Penrose quasilattice of figure 1 as a subset of-tiéd I';.

are appropriate to real crystalline structures. Indeed, it seems that most of the quasilattices
obtained by cut and project [20] or by algebraic ‘filtering’ [27] within the de@§8]-

module are supported by sets of the typeln figures 1 and 2 we give simple demonstrative
examples of such labelling properties.

Those g-integer quasilattices are neither translationally nor rotationally invariant of
course, although they contain rotationally invariant subsets obtained through the cut and
project method. Moreover they still display nice algebraic and geometrical features,
which straightforwardly generalize those for lattices. We already mentioned their similarity
property under scaling bg:

BA CA
which is due to
ﬂZﬂ - Zﬁ.

We shall eventually see how a concept of a quasiring and modules on a quasiring
emerges from the study of additive and multiplicative propertieg pof

Z5+Z5CZ/3+X (7)
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ZﬂZﬁ C Z,s +Y (8)

whereX andY are to be determined in a non-ambiguous way. The aim of this paper is to
present some interesting propertiesgeintegers and to give (partial) answer to (7) and (8).
Motivations were presented in [14]. We here give complete proofs of some results claimed
in [14] and we extend them substantially to more general cases. Of course, we are mainly
concerned by the three quasicrystallographic cases (2)—(4), but we shall also give original
results for general quadratic unit Pisot numbers, namely tgosfich are solution to

2 =ax+1 acZ,a>1 (9)
P=ax—-1 acZ,a>3. (20)

In the next section, we shall present the basic definitions conce#yngn one hand,
and concerning-quasilattices and Meyer sets Rf on the other hand. These definitions
will be followed by a first result about the Meyer propertyZf when g is Pisot.

Section 3 is devoted to the ubiquitous golden mgar= 7. Indeed icosahedral or
decagonal quasicrystals are among the most stable quasicrystalline phases and the irrational
7 is the simplest Pisot number in many aspects. It is the reason why it deserves a specific
and pedagogical treatment on its own. As a matter of fact, we prove the following:

Z 1 1
Zf—i-ZfC—ZCZT-I- O,i—,:t—z
T T T
7 1 1
ZTZ,c—chH- O,i—,i—z .
T T T

In section 4, we give precise inclusions for general quadratic unit Bisdftthe type
(9), (10), and these results are also new. In section 5, we discuss the notion of quasiring
structure which emerges from our results. In particular we show how the existence of
a quasiaddition as an internal law for Z; allows one to generate the whole set in an
inductive way, starting from the ‘seed-1, 1}. Finally, in section 6 we shall consider
r-quasilattices in the plane, of the form (6), in order to give a pedagogical insight of the
importance ofZz in quasicrystalline studies.

2. Delaunay—Meyer sets3-expansions andg3-integers

A Delaunay set in space is typically a mathematical model for the set of atomic sites in
large material structures. It fills the space in a not too dense and not too discrete manner.
More precisely we define (see [26]) the following.

Definition 2.1.A subsetA of R? is a Delaunay setf there exist two radiiR, > Ry > 0
such that each ball with radiug;, whatever its location, shall contain at most one point
from A while each ball with radiu®,, whatever its location, shall contain at least one point
from A.

A Meyer quasilattice is a Delaunay set which is endowed with arithmetic properties: it
is closed under subtraction modulo a finite set. More precisely we define the following.

Definition 2.2.A Meyer quasilatticeA is a Delaunay set iR? such that
A—ACA+F (11)

whereF is a finite set inR.



Quasicrystalline numeration systems 6453

In the following we shall mainly deal with sets symmetrical with respect to space
inversion A — —A. Such a Meyer quasilattice then obeys+ A C A+ F and it
becomes possible to provide with a quasiaddition law whe# is given a hon-ambiguous
characterization. Indeed, if we hawey € A, x +y = n+ f wheren € A, f € F,
then we definec4+y = n. This internal law is commutative but not associative. Its natural
framework is the class of equivalent Meyer sets defined in the following way.

Definition 2.3.Two subsetsA and A’ of R are equivalent modulo finite seifthere exist
two finite setsF' and F’ such that

ACA+F and ANCA+F
and we then writeA ~ A’.

Itis clear thatA + A C (A + F) ~ A if A is a Meyer symmetrical set. If one imposes
a Meyer quasilattice\ to be scaling invariant under dilation /> 1:
BA C A (12)
then 8 has to be an algebraic integer. More precisely Meyer has proved the following
assertion [25].

Theorem 2.1If A is a Meyer quasilattice, iB > 1 is a real number, and if (12) holds true,
then 8 is either a Pisot number or is a Salem number. Conversely, for each dimehsion
and each Pisot or Salem numbgy there exists a Meyer quasilattice in R? such that
BA C A.

We recall that aSalem numbep = B© is an algebraic integef > 1 such that all
algebraic conjugateg”’, i > 0, lie within the closed unit disk and at least one of them lies
on the unit circle.

Our construction of (possible) quasilattices has something to do with this remarkable
connection between a class of algebraic integers and self-similarity of discrete subsets in
R?. For anyg > 1, there exist countable canonical setRinvhich areg-scaling invariant.

Their construction rests upon notions first introduced gy [32], and later developed in

[7].
Let 8 be non-integer ang > 1. The g-expansionof an arbitrary positive real number
x is the serieg&;)_«<<; such that

J

x= ) &p'

where j is the highest integer such that
Bl <x < pitt
the positive integerg, assume their values in the alphabet
{0,1,2,...,[81} ([B] is the integer part o)
and are computed by using the so-caltgdedy algorithm One recursively defines
& = [x/p'] rj = {x/B’} (the fractional part ofc/B/)
and forl < j & = [Bripal, r = {Bria} ...
finally, if j <O, we putég=&_1=-.-=§&,1=0.
For brevity we also write
x=&&_1&_o.. . &6 1E 2k 3. .. (e.g. 2= 10.01 wheng = ).
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The highest power off appearing in theg-expansion ofx will be called thes-degreeof
x and will be denoted by dggr), so we havej = deg;(x). When ag-expansion ends in
infinitely many zeros, it is said to biinite, and the ending zeros are omitted.

We will denote by

int(x) = &8/ +--- +&
the ‘integral part’ ofx and by
fracc) = £1871 +E2872+ -

the ‘fractional’ part ofx.
The set of real numbers which have a zero fractional part in gheixpansion is named
set of g-integersand is denoted by

Zs E(£E B + 18 4+ 8B+ E0)) = Zf U (-Z))

whereZ‘g designates the set of non-negatjgéntegers.

Some configurations;§;_1...& ... in the above definition are not possible. What is
allowed and what is forbidden in the set @fexpansions is completely determined by what
is called theRényi g-expansion of 1

dL,B) =tpt+ B2+
=0nt.. .t

wherer; € {0, 1,...,[B]}. This expansion is reminiscent of the identity=10.99...9...
in the decimal system. It is obtained by the following process:

n = [f] ri={B}....t1 = [Bri-] rp={Bri—1}...
or, equivalently,

o =[BT, (V)]
where

Tp(x) = Bx (mod D).

In this context, note that the greedy-algorithm coefficignof a real number € [0, 1) is
also equal to

£ =[BTy ‘()]
We then have thg-expansion rule [29].

Proposition 2.2.No infinite sequence of positive integers is present in Argxpansion if
itself and all its (one-sided) shifted are lexicographically larger than or equal to:

... if the latter is infinite
and to:

(tatp . . . ty_1(t, — 1))® if d(1, B) =0.11285 . . . t,_1ty, is finite.
()® means that the word within) is indefinitely repeated.

Therefore, once/(1, 8) is known, it becomes possible (in principle, but it may turn out
to be unpracticable!) to build upg by following the lexicographical order of the allowed
sequences.

The countable séfy is naturally self-similar and symmetrical with respect to the origin:

BZg C Zg Zg = —Zg.
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It tiles the line with a finite or infinite number of intervals separating two nearest
neighboursy; < x;.; with lengths of the tiled; = x;,1 — x;. Now we are concerned by
setsZg that are Delaunay and possibly Meyer. This is at a certain extent assured for the
two following important results.

Theorem 2.3 ([7]).Suppose thag is a Pisot number. Then theéRyi g-expansion of 1 is
eventually periodic,

d(1,B) =0n1t.. . ty(tust-- - tugp)®.
When 8 is a Pisot number, it follows thaks is a self-similar tiling of the line with a

finite set of different tiles. The lengths of the tiles a{r@(l), 0<i<m+p—1} (see
[37]). More precisely the lengths assume their values in the set

1,,3—1‘1,,32—&/3—[2,...
BT BT — e — 1
Hence, ifg is Pisot, therZg is Delaunay, and the radR; and R are given by

R1 =min Tg(l) —€ wheree > 0 is a suitable small number
1

and
Ry = miang(l) =1
Our aim now is to prove that, whef is a Pisot number, the sél; of g-integers is a
Meyer set. We will denote b¥[ 8] the following extension ring
Z[B]l = {m + nB|m,n € Z}.
Lemma 2.1Let R > 0 and let
Fr = {frac@)|z = @ + - - + a1p + a0, a; € Z,|a;| < R).
If B is a Pisot number, thehy is a finite subset oZ[f].

Proof. Letz =3 ,.;z:f' be thep-expansion ot. We have frac) =3,z =

z—intz) = Y gaiB — Y/ ozp. Since 0< z < [B] and |a;| < R, fradz) is a
polynomial fromZ[g], the coefficients of which are bounded B+ [8]. The lemma is
then a consequence of the fact that ftac [0, 1) and of the following classical resultl

Lemma 2.2 (see [35, lemma 6.6]et 8 be a Pisot number and I& > 0. Then the seFy
is discrete.

Theorem 2.4Let 8 > 1 be a Pisot number. Then the g} of g-integers is a Meyer set.

Proof. First consider the sum of two elements= x4+ --- +xp andy = y,8' +-- -+ yo
from Z;. Thenz = x 4y is of the formz = a;/ 4 - - + ao, with 0 < a; < 2[8]. By
lemma 2.1,Fo5 = {f(2); z € Zj; + Z) is finite. Thus

Z; + ZE C Z;;r + Fog).
Now, suppose that > y, and letz = x — y = a,," + --- + ao, —[B] < a; < [B]. As
above one obtains

Zg — Z; C Zg £ Fig.

[l

Finally, let us mention the following result giving more precision about th&getZg.
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Theorem 2.5 ([11]).Let 8 be a Pisot number. There exidis= L(B) having the following
properties. Letr, y € Zg. If x +y (resp.x — y) has a finiteg-expansion, then

x+y(respx —y)e€ Zﬁ/ﬂL.

3. Algebraic properties of the set ofr-integers Z,

The golden mean can be considered as the simplest Pisot number. It is the smallest one
among the totally real (i.e. whose all conjugates are real) Pisot numbers (see [6]). Because
v and—2 = ¢’ are solutions to

X?=Xx+1
the Renyi expansion of 1 reads:
d(l,7)=0.11

This means that ne-expansion sequendg...%.£_1...& ... displays two adjacent 1's.
More precisely, any positive real number has-axpansion

J
x= > gt with & € {0, 1} and&&,1 = 0.

I=—00

The subset oR defined by

j

7, & {x € R Zsir" is the -expansion o11x|}
i=0

is the set ofr-integers. Positive-integers are thus represented by a finite string of 0's and

1's, with the condition that no run of two adjacent 1's occur. It is well known that this

corresponds to the representation of natural numbers in the Fibonacci numeration system

where the Fibonacci numbers are defined by

def def def
fri2 = fosa+ fo =2 foZ'1

So there is an explicit bijection between integers andttigtegers (see for instance [8]),

Jn Jn
nzgéiﬁﬁxnzggiri. (13)

Note that properties of Fibonacci representations of natural numbers have been investigated
by many people (see [21]). Any-integer is an element of the algebraic ring

Z[t] = {m+nt|m,n € Z}.
The latter is actually identical to the set of real numbers which have a firégpansion
(see [11)).
An interesting question then arises. For what values:odnd » is the combination

m + nt a t-integer? In figure 3 we have plotted the lattice poifits n) in Z? such that

m + nt € Z,. They are clearly all the lattice points lying within the bands defined by
tx—t2<y<rx+r

in the first quadrant, and by

tx—f<y<tx+12
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;
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OO/

Figure 3. Z.-numbers.

in the opposite sign quadrant. Note that the band width’js/1 + 2. This ‘inverse’ cut
and project method (see [20]) leads to the following definition of the positive and negative
r-integers, denoted respectively By andZ_

Zj:[m+nr|m,neZ,m,n>0,—1<m—z<t} (14)

T

Z::[m+nt|m,neZ,m,n<0,—t<m—z<1 . (15)
T

The algebraic meaning of (14) and (15) involves the standard ring automorphigin Jof

x=m4nt — ¥ =m4nt' =m— 2. (16)
T

Let us introduce the following ‘sieving’ procedure from [27] in order to select within the
dense ringZ[t] a Delaunay subset

2P = {x € Z[t]|x" € P}

where P is some bounded subsetlitn Then we can check from the above that
7+ = positive part ofz 17 (17)
Z7 = negative part ofs ¥ (18)
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and
2D 7, c nCTY, (19)

The inclusion relations (19) also mean that it is sufficient to sieve from the discrefe set
in order to obtainz (-1

D —(x € Z,|x' € (-1, D). (20)

Scaling (19) with arbitrary powers afleads to the interesting chain [12, 14] of embeddings
(see [4] and lemma 4.1 below for an algebraic proof)

2V c g i ¢ gCTTE jez. (21)

Let us now turn to the Meyer property of the gt In this specific case, a first estimate
for the finite setF in (11) is given by

1 1
F=10,+—, -
T T
However, if we do not think ofZ, + Z, C Z, + F in terms of uniquer-expansion, more

precise inclusions exist (see section 4).
In the present content let us now prove the following.

Theorem 3.1.
v/
L + 7, C - (22)
T

This result restricted to the positive part®f, can be found (with a totally different proof)
in [10].

Proof. We will define for anyN € N, By = {X € Z,7|X < tV}. Itis easy to see that
By = tBy_1U (1 + t2By_») and the assertion results from the two following lemmis.

Lemma 3.1For anyN € N there existaV’ such that
By + By C T %By.. (23)

Proof. For N = 0 it is trivial and forN =1we useonly }-1=1 + ;12 We suppose that
(23) is valid until N and for N + 1 we have

Byi1+ Byy1 = (tBy U (14 t?By_1)) + (tBy U (1 + t2By_1))
= (tBy +TtBy) UL+ 1By + t2By_1) U (24 12By_1 + t?By_1)
C t(By + By) U (14 1(By + By)) U (2+ 1%(By—1 4 By-1))
Ct By U@+t By) U+ Biv-1y)-
In order to complete the proof we need to prove that the following holds true
1+ r_lBN C T_ZBN+2 (24)
2+ By C T °By,s (25)

hence for(N + 1)’ we can take mav’ + 2, (N — 1)’ + 3}.
By direct calculation we show that (24) is true fof = 0,1,2. Furthermore, by
induction and by usin@By.,1 = By U (t" + By_1) we have

1+t By =A+tBUEVt+1+ 1By 1)
C 1 2By2U (¥ 1+ t72By,1) C T %By,as.

The proof of (25) is similar. O
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Lemma 3.2For anyN € N there existaV’ such that

By — By C £1 2By (26)

Proof. For N = 0 andN = 1 it is trivial and forN = 2 , we have onlyr — 1 = % We
suppose that (26) is valid unt¥, and for N + 1 we have

By41— Byi1 = (tBy U (1+t?By_1)) — (tBy U (1 + t°By_1))
=+ ((tBy —tBy)U (1 +1°By_1 — TBy) UT?(By_1 — By_1))
C £ (t7'By U1+ t*(By-1 — By_1))
U@ —1+1%(By-1— By-1) U B-1y)
C £ (@ By UBy_1y U@L+ By 1) U(—t 1+ Biy_1y)).

In order to complete the proof, we have to show that

By —1cC t By U{-1} (27)
and

By -t ct By U{—171. (28)
Forx =0 and 1 it is obvious and for > 1, x € By, we shall take itx-expansion

X = Zi;izcifi +7
and (27) then follows from the two identities

R 1=ttt 2yt for k > 0 even
A [ Lo L By for k > 0 odd

The inclusion (28) is a simple consequence of (27) by uékg— %) =t Y(tBy—1). O

Remark 3.1We can tell more about (22) or (23). It can be shown that fomath € Z
there existsf € {0, +(1/7), +(1/7?)} such that

Xindn = Xm + Xy +f
wheren — x, € Z, is the bijection (13).

Remark 3.2.The content of theorem 3.1 means that translational invariance does not hold
for Z,. We cannot consider each point of the latter as the origin of an@heuupporting
and supported by the first one. However, (22) also means that there is ‘almost’ coincidence.
Both sets are equal up tﬁ% as it can be guessed from figure 3. Of course the same can
be asserted about all Bravais quasilattices of the type (6).

The second result we want to give concerns the multiplicative propertigs.oihdeed
we have the following.

Theorem 3.2.

Ly
Tl C -
T
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Proof. We shall show again that, for any € N, there is av* such that
By X By C 172By.. (29)

For N =0, 1 itis trivial. We suppose that (29) is valid until, and forN + 1 we have
Byi1 X By = (tBy U (14 12By_1)) x (tBy U (14 t2By_1))

= tZBN X By U1+ tZBN_l) x TBy U1+ ‘L'ZBN_l) x (1+ rzBN_l)

C By-Ut(By +1%By-1x By) UL+ t%(By-1+ By-1) + T*By_1 X By-1)

C T 2By-42UT(By + By-) U (L+ By—1y + T2Bv-1))

C T 2Byney2UT ?Biyoy+1U (L + Biv—1y + T2Bv-1y)

C T 2(By-12U B(y-y11U By)

whereM’, N' are from lemma 3.1 = maX{(N — 1)/, (N — 1)*} and for(N + 1)* we can
take (N + D* = max{(N*) + 1, N* + 2, M'}. O

4. Algebraic properties of Zg for 8 a quadratic unit Pisot

We now address the question of characterizing finite sets appearing in (7) and (8) when
B is a generic quadratic unit Pisot, i.e. is solution to ((9)) or ((10)). Note that the two
guasicrystallographic Pisgt ands from (3) and (4) belong to these classes. We could of
course attempt to extend in this more general case the inductive methods we have employed
in the previous section. However, we soon become very puzzled about how to manage
difficulties increasing with the values af

4.1. Case wherg is the root> 1 of the polynomiak?® —ax —1,a > 1

In that case, the canonical alphabetds= {0, ..., a}, the g-expansion of 1 is finite,
d(1, B) = 0.a1, and every positive number @&[g] has a finiteg-expansion [11].
1

Let ' be the Galois automorphism: g — -3 Recall that if P is some bounded

subset ofR with non-empty interior = denotes the sdt € Z[B]|z’ € P}. We recall that
this algebraic filtering of the densg 8] in order to obtain the Delone s&’ is equivalent
to the cut and project methodd, 30]. We first have the following.

Lemma 4.1Let 8 be the root> 1 of x> —ax —1,a > 1. Then:
(i) letz € Z[B], z > 0 and let(z;)_.<i<n be theB-expansion ot with z_,, # 0.

. 1
If m > 0thenz ¢ =1# moreover ifz < 3 thenz ¢ =F%H);
(i) zf == NRT, Z; = =PV NR; (30)

(iiy 2V cZp c PP ¢ %; (31)

. 1 a Zﬂ
Z 0,+—,..., = —.
(iv) ,3+{ 5 ﬁ}c

Proof.
(i) Recall thaty = £ (—1)iz; 7. Sincez,, # 0 then by admissibilitg_,,,1 <a—1

I1=—m

and the other;'s are< a. If misevenz > —a(---+p" 5+ "3 —(a — D" 148" =
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—ag;"—: + pm 4 pm=2 = g1 hencez ¢ (—1,8). If mis odd,z < a(---+ ">+
B" 3+ (a —1p" Lt — pm = —p" L, hencer’ ¢ (—1, B). Note that if 0< z < % then
m = 2.

(ii) Let z € Zj and let (z))o<i<n be its p-expansion,z = Y gzp and 2/ =
Yo(=DizB~". From ... —z3873 — 21871 < 7/ < z0+ 22872 + ... we know that
-1<7 < ;%_21 = B. HenceZj c Y""PnR*. Conversely, lett > 0, z € Z[]
such thatz’ € (-1, B) then it follows from (i) that theg-expansion ofz has the form
(2i)—m<i<n,» Wherem has to be> 0, hencez € Z;.

(iii) The proof is a direct consequence of (ii).

(iv) It is easy to see thaZ/‘g + {0, %, gl C AP ﬁ—g. On the other hand,
taking any non-zerq € Z}, we know that; > 1. By using the inequality + a8 < 8% we
+
can assert that — {0, /%, N ke LB AR ¢ jzs—’;. O

Proposition 4.1.Let 8 be the root> 1 of x> —ax — 1,a > 1. Then

1) 7

Zﬁ+Zﬁ CZﬂ+ {O,ﬂ:ﬁ} C ﬂz.
Proof. Pick anyx,y € z;, thenz = x + y € Z[B], with z > 0, hencez € (-2, 28).
If 7 € (-1, B), then lemma 4.1(ii) gives us thate Z;;. If 7/ € [B,28), then we define
g=z+ % which fulfils g > 0,¢’ =7z — 8 € [0, 8). Again, by using the previous lemma
we have thakg € Zj and soz = g — 5 € Z} — 5. Similarly, if 2/ € (=2, —1] thenz > 1
and we define a positive numbgr= z — % with g’ =7+ g € (-1, 8) which is in Z;.
Hence we see that= ¢ + ; € Z; + 3.

Pick anyx, y € Z%, suchthat = x—y > 0, hencel’ € (—1-8,14+8). If 7 € (=1, B)
thenz € Z}. If 27 €[B,1+ B), theng =z + % fulfils ¢ > 0,¢' =7 — B € (0, 1), hence
1=g— % €Zj - /% If 7/ € (—1— B, —1] C (B2, B) then we apply lemma 4.1(i) and
we get that; > %. We can define a nonnegative numbget z — %, g=7+Be(=1p)
which is inZ;. Hencez = g + % €Z; + %. Other cases are symmetrical. O

Proposition 4.2.Let 8 be the root> 1 of x> —ax —1,a > 1. Then

Zg x Ly C 7 +{Oj:1 ia}czﬁ
X =, ., = —.

Proof. Pick anyx,y € Zg such thatz = xy > 0. From lemma 4.1(ii) we get that
7 e (=.B%. If 7 € (=1,8), thenz € Z{. If ' e (—B, 1], we apply lemma 4.1(i)
and we get that > 3. We define a non-negative = z —  with ¢' =z + 8 € (0, 8)
which is inZ;, hencez = g+ 5 € Zj + 5. If 2/ € [(k — DB kB).k € {2,....a},
theng = z + ’%1 fulfils ¢ > 0,g" € [0,8) and sog < ng. So we can rewrite; as
z=g-"S ey -5 I eap.p? = ap + 1), we putg = z+ 4. Then
g>0¢€(0,1 andz € Zg - %. Finally, for x, y € Zg such thatz = xy < 0, we know
from the above that-z € Z; + {0, 3., ..., +4). O
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4.2. Case wherg is the root> 1 of the polynomiak?® —ax +1,a > 3

The canonical alphabet i = {0, ..., a — 1}, the g-expansions of 1 is eventually periodic,
d(1, B) = 0.(a—1)(a—2)*, and every number &[] (the cone of first degree polynomials
in B with non-negative integer coefficients) has a firftexpansion [11].

The interesting fact is that, i € Z/‘,f and its 8-expansion i = Zf;o z; B¢, then the
B-expansion of(z)’ (' is the Galois automorphisff — %) is (z) = Z?z,k z; B where
i = Z—j-

Lemma 4.2Let B be the root> 1 of x> —ax + 1,a > 3 andz € Z[B] NR*. Then
(i) z has a finiteB-expansion if and only it’ € (0, co)

(i) Zj = 0P NRY andZ; = =PI NR™ (32)
1
(iii) Zy C PP < 7y + {0, j:E}. (33)

Proof.

@M 1f0 <z=>", zp, wherem,n € N,z; > 0, thenz’ = Y" zB" > 0. If
z=cB+d>0,c,d €Z,7 € (0, ), thenc/B8 +d > 0 andc +dB > O.

e lf c,d > 0, thenz is in Z*[B], and due to [11] we know thathas a finite8-expansion.

e Letc < 0,d > 0. Since there exists € N such thatg!~! < —c < 8, there exists
k € N, k <1 such thats*z e Z*[g]. To find such &, we carry out the followingrocedure
Fromz =¢8+d > 0 andg = a — 1/8, it follows thatca + d > %. If (ca+d) >0,
then Bz = (ca +d)B — ¢ € ZT[B]. OtherwiseBz = c1f8 +d1 > 0,c1 < 0,d; > 0 and
ca +dy > % > ﬁ‘—'. Sinceﬁ% > —1, it follows that there exists & < [ such that
B*z € Z*[B] and this implies that has a finiteg-expansion.

e Letc > 0,d < 0. The previous case implies thAt’ = dB + ¢ > 0 has a finite
B-expansion and sg has a finiteg-expansion.

(i) Let z € Zg and let{z;}j be its B-expansion. We havg = z0+z1B Y+ +z, 87
Since(z;)o<i<n 1S aB-expansion, we have, . ..zo <jx (@a—1)(a—2)...(a—2), where<,,
denotes the lexicographic ordering. In fact, it is easy to see that the forbidden blocks are
of the form(a —1)(a—2)...(a—2)(a — 1), thus ifz, ... zg IS a B-expansion theng.. . z,
is a B-expansion as well. From this it follows thatQz' = zo+z18 1+ -+ z,87" < B.
Conversely, let > 0, z € Z[B] such that € [0, ). From (i) we know that th@-expansion
of z is finite,z = )", ziB z_m #0,m,n e N. If m =0, thenz ¢ Z;. If m # 0, then
2= YguB + Y, up, ands = Y gupT + Y1, up, where 0< Y1z < B.
Sincez_,, # 0 we haveZ:,ln zp~t > p™ and hence’ ¢ [0, B). Thereforem = 0. Hence
Zj =2 NR*. The proof ofZ; = AINR™ is similar.

(i) The first inclusion is a direct consequence of (ii). Leg Z#A If z > 0 and
7' €10, B), thenz Z} by (i). If z > 0andz’ € (—8,0), thenz’+8 = (z+%)/ € (0,B8) and
z+3 >0. Thus by ()2 + § € Z} andz € Zj + {— ). The case < 0 is symmetricall]

Proposition 4.3.Let 8 be the root> 1 of x> —ax + 1,a > 3. Then

ZJr
(i) Z} + 2} C 7’3

1
(ii) Zf — L C Zp + {0, :l:E}.
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Proof.
(i) Using the fact, thap > 2 and lemma 4.2(ii), we find that

Z;;
+ + (0,28)
LZg+7Zg CX C _/3 .

(i) In general the difference of two positive-integers may have an infinite eventually
periodic g-expansion. For instance, thfeexpansion of8 — 1 is equal to(a — 2)(a — 2)“.
NeverthelessZ; — Zj C £## C Zy + {0, £5} by lemma 4.2(iii). O

Proposition 4.4.Let B be the root> 1 of x? —ax + 1,a > 3. Then

Z Zg C =L
X _—
B B B

Proof. Letx, y € Z; andz = xy > 0. Sincex’ andy’ € [0, B), z = x'y’ € [0, f%). Then
% = (Bz)’ € [0, B) and by lemma 4.2(ii)8z € Z}, hencez € Z/T;. O

Final remark. Note again (see also (17)—(19)) that the above results (30)—(33) concerning
inclusion of sets are crucial for understanding the labelling role played by thégegers,
as we particularly stressed in the introduction.

5. Quasiring structures and modules on quasirings

We wish here to emphasize a mathematical aspect that emerges from discrete structures that
we have described in this paper. Precisely this concept of equivalence classes of Meyer
guasilattices and related additive and multiplicative laws. We first consider our simplest
example of a Meyer quasilattice, i.e. the setreintegersZ,. Let us restrict the Meyer
definition of equivalence modulo finite sets to the8s that are finite subset of the ring
Z[t]. Clearly we still have

Ze+7; =7, (modF) Z.7. =7, (modF)
or, equivalently, in terms of equivalence classes

Ze ={Z. + F; F C Z[7] finite}

Lo+ Ty =7, 2.7, =Z..
If we concentrate on the elements @ as representatives of the elements of the
set Z., the above laws induce the following ones on théntegers. Ifx +y =
n+ f,feF={0+ +1} we shall witex+y = 7, and similarly xxy = o, if
xy = 60 4+ g,g € F. The mathematical definition of this precisely relies upon the
numeration system and is clearly non-ambiguous:, i¥ € Z., and

=Y et =Y (34)
then

x+y = sign (x + y)ZSc;ri XXy = sign (xy)Z];diti. (35)
Therefore+ and x map fromZ, x Z, onto Z,.
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Despite this evidence of strong departure from a ring structure, we shall adopt the term
quasiring structure. Similarly, any quasilattice of the type (6)Rih will be said to be
endowed with the structure of a module on the quasifing The reason lying behind this
choice of terminology is our conviction that structural propertieshofire very close to
that of Z-modules. For instance, it is well known that lattices are the orbit of themselves
considered as a symmetry group acting on a finite subset. We have something similar to the
guasiringZ,. Using the mappingk- it is easy to build upZ, from a ‘seed’ set similar to
the crystal case. The starting setZ% = {0}. We denotel” = {41} and putZ‘+! = Z¥4T.
ThenZ, = U;2yZ*, i.e. anyx € Z., can be reached from the starting point O through a
finite number of quasiadditions involving elementslin In this sensd” can be considered
as a ‘growth set’. The interpretation of that fact in the Fibonacci numeration system is the
successor function, which maps the Fibonacci representation of the natural nuroiter
the Fibonacci representation of+ 1. Actually, we have a similar result for any quadratic
unit Pisot numbers.

As for (34) and (35) we define laws, —, x by truncating the8-expansion oft + y,

x—y, xy respectively, after the radix point. By the previous results, we know that fractional
parts (i.e. parts after radix point) of the8eexpansions belong to finite sets. More precisely,
if (¢;)—coxi<k IS the B-expansion ofx + y|, then

k
xby =signx +y) ) _eip.

i=0
If (ci)-oco<i<k IS the B-expansion ofx — y| then

k
x=y =signx —y) > cp'.
i=0
And if (¢;)_co<i<k 1S the B-expansion ofxy| then
k
xxy =signxy) Y cip'.
i=0

Proposition 5.1.Let 8 be a quadratic unit Pisot, and [Et= {1+1}. Then
Zp = Ur=0Z whereZj = {0} and Zy** = Zj+T.

Proof. By construction we know thaﬂboZ’; C Zg. On the other hand assume that
S ={lx| € Z}|x € Zp, x & Ur=0Zy} # 0. (36)

We pick the minimum of the sef, smin = min{x € S}. We note thats,i, > 1 and we
distinguish two possible cases.

e Let B be the root> 1 of x2 = ax + 1,a > 1. By using lemma 4.1(ii) we
know thats/;, € (=1, 8). Hence ifs;;, € (0, 8) then (smn — 1)’ € (-1, 8 — 1) hence
(Smn—1) € Zg. Sincesmin is the minimum of the sef, we know that(smin — 1) € UDOZ";
and SOsmin = (smin — D+1 € Uk>oZ’g, which is a contradiction. On the other hand, if
shin € (—=1,0) then (smin — %)/ € (=1+ B, B) and sO(smin — %) € Z}. Sincesmin is the
minimum of the setS, (Smin — %) € U,@OZ’;;. The fact thats,;, € (=1, 0) entails that the
B-expansion Ofsyi, is of the form smin = Z{leiﬂ". Then we see thgs-expansion of
(smin— % + 1) is equal oy, zp + St + 2 and S0smin = (smin — 5)+1 € UoZfy. So
we get again a contradiction with (36).
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e Let B be the root> 1 of x> = ax — 1,a > 3. Here, similarly to the previous

case, we show the contradictiop, € UkEOZ’;,. By using lemma 4.2(ii) we know that
Spin € (0, B). If s/, € (1, B) then (smin — 1)’ € (0, B — 1) hence(smin — 1) € U,@OZ’; and
SO smin = (Smin— 1)+1 € Uk>0Z’;}. Next, if s;;, € (0, 1), then(smin — 1+ %)/ e (=1+8,8

hencesmin = (smin — 1+ 5)+1 € Us0Zj. O

We have here two internal commutative laws which are not associative, and
distributivity does not hold eitherx+(y+z) # (x4+y)+z, xx(yxz) # (xxy)xz and
xx(y+z2) # (xxy)+(xxz). For instance(z?+ 1)x(1+(t?+ 1)) = ° + 3, whereas
24+ D2+ Dx(x24+ 1) =15+ 3+ 1.

The non-associativity and non-distributivity are encoded by the range of values assumed
by the three following maps frorfig x Zg x Zg into Zg. Additive associator

[x,y, 2]+ = ((x+y)+2) = (x+(+2)) € Fy.

One conjectures that the above $g&tis simply equal to{+1}. Multiplicative associator
[x,y,2]x = (xxy)xz—xx(yxz) € X,

and distributor
[x,y,2] x = xx(y+z2)—(xxy—xxz) € X

The two setsX are not finite and a systematic rescaling of these associator and distributor

in function of deg(x), deg;(y) and deg(z), is certainly needed here in order to get finite
sets.

6. Five-fold quasilattices in the plane and in space

d-dimensional discrete sets of the form (6) can be built onghetegersZ,:

A= iZ,ei
i=1

where {¢;} is a set ofd linearly independent vectors.A is a Meyer quasilattice by
construction. More precisely we have

A=—A and A—ACA+FcCA/
The setA is self similar

TACA
and from theorem 3.2. we have that

Z.ACA+FCAJT2

Generically, the vectors;’s have distinct arbitrary directions iR¢. Five-fold or ten-fold
symmetries appear as locally possible if those directions are appropriately chosen. This is
due to the ‘cyclotomic’ nature of the golden mean

1

t:2cosz —-=7—-1
5 T

By this way we can introduce in the complex plane ‘canonicatjuasilattices ot -grids:

r, def 7.+ 7.4 whereg = es andg =1,2,3 or 4
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/ o ..1‘.0M |

Figure 4. t-grid I'y.

Thet-gridsT'y, I'; are shown in figures 4 and 6. Thos@rids are not rotationally invariant
with respect to the origin. However, they are almost so. This is clear from the relation

P=tr -1 (37)
For instance, we have from theorem 3.1.

1 1
{FlZZT‘i‘(ZT“FTZI){ C Fl+ {0,:‘:;,:‘:;}{

and similar inclusions forf,.

In order to see how these-grids are obtained by the cut and project method, we
calculate their respective algebraically conjugate sets within the ring generatedrin,
which is actually the cyclotomic ring[¢]

Z[t] + Z[*]¢ = Z[¢]. (38)
The standard automorphism (16) 4jiz] induces the following one in (38)
p=x+yr— p"=x"+y¢"
with
=15 (39)
Equation (39) is indeed consistent with

c+E=rer’=—%=¢*+E*
and note that (39) is of order 4 since

& =t. (40)
From (40) and (19)-(21) we have
Z[t] N (=1, 1) + (Z[r] N (=1, D)¢3 c TF C Z[t] N (=7, 7) + (Z[t] N (=7, 1) 3.

In figure 5 we see thal’; fills the t-rhombusR, = (-7, 1) x (-7, r)e%”, but the
equality

ZiZlNnP=TiNP
holds only for the smaller rhombu® = R;.
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Figure 5. Algebraic conjugatd’; of the r-grid I'y.

Figure 6. t-grid I's.

This corresponds to different rhombic windows in the perpendicular plane along which
the Z*-lattice points are projected onity (up to a%’ rotation). These windows are shifted
with respect to each other in order to make symmetrical with respect to the origin.
The gridT", has subsets invariant with respect t¢-86tations about the origin. We have
different possibilities to build up such sets (up to a scalingthy We can consider for
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Figure 7. Algebraic conjugatd’; of the z-grid I',.

instance unions of gridg,

4
=, €Jer,  forg=1234
j=0

and better, we can ‘force’ the 10-fold symmetry in a cyclotomic way by introducing the set

4
Z ) E Y ¢z, (41)
j=0

with self-explanatory notations. Note that we could have also cho$ea e’ from the
fact that¢® = —¢, ¢8 = —¢3, andZ, = —Z,, and so

Z‘[[é‘z] ZZt[C]-
Clearly
(%, =3, forq =1,2 3,4 and¢Z.[¢] = Z.[¢].

Those sets also have nice algebraic properties:

Proposition 6.1.The setsAg gef Z.[¢] and A, def ¥, whereq = 1,2,3,4, are Meyer
guasilattices. In particular)g is characterized by:
Ao+ Ao C Ao+ Fo whereFp = F + F¢ (42)

and

6
F = {X € Rlx = Zéjl'_j, with %_j e {0, 1} andfjéjﬂ = 0} (43)
Jj=0

Proof.
(i) We have to prove that th&, is, for ¢ € {0, 1, 2, 3,4}, a Delaunay set. By using
formula (37) and theorem 3.1, we obtain the following inclusions

AN CZi+Ze +T( Ly + 7o)+ (Ze +Zy) + T(Zy + L)) C Lo Jt* + 2o Jt%¢ =T /7%
(44)

and

Ay C Lo +Zo) + (Zy + 70)¢ C Lo JT% + (ZoJTHE = T1/7? forg=1,2234
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Figure 8. Quasicyclotomic ringZ,[e%].

i.e. eachA, is embedded in a thinnet-grid’ which has of course the Delaunay property.
On the other hand each of thogg contains a looset-grid (for examplel’y C Ao),
which is also Delaunay. From this fact it follows that thg's, g € {0, 1,2, 3,4}, are
Delaunay sets.
(if) There exists a finiteF, suchthatA, — A, = A;+Ay C A+ F;,q €{0,1,2,3,4}.
At first we prove (ii) for Ag. From (44) we have that

Ao+ Ao C T/t +Ty/t* € I'y/7°
then by using
Z.)t*CZ, +F

whereF is defined in (43) we get (42). Similarly, it is obvious thaj, for g € {1, 2, 3, 4},
is a Meyer quasilattice. O

Note that we could also prove the same for the 10-fold Ls)ét:l ¥,. The ‘quasi-
cyclotomic’ ring Z.[¢] that we have introduced in (41) has aesthetic nice properties which
can be seen in figure 8. Its algebraic conjugate set is displayed in figure 9. The double
decagonal nature originates from the property (19). One can assert that

Dy NZ[¢] = D1 N (Z[¢D* whereas(Z.[¢])* C D2 NZ[¢]

where D, is the decagon with radiug and centred at the origin.
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L

Figure 9. Galois conjugate of the quasicyclotomic riﬁg[e%].

The existence of the symmetric Delaunay &e{¢] within the dense ringZ[¢] is
reminiscent of the discrete reduction of the cyclotomic ring

n—1
2im. 2igm 2im

Zlew]=) Ze" =Z+Zer
q=0

whenn = 1,2, 3,4 and 6, i.e. whem is crystallographic. In this case, replacifigby 7Z.
leads to something similar:
Z. +7.€% C Z.[e¥] C (Z, + Z.e%) /7"

For other non-crystallographie it would be necessary to find an appropriate Pisot-
cyclotomic numbes (see [14]).8 =y = 1+ /2 andB = § = 2+ /3 from (3), (4) are
such examples.

We wish to close this section by mentioning the three-dimensional version df,the
andZ.[¢]. These sets seem to be fundamental for quasicrystals and they are fully described
in [4]. Some insights are just given here.

A canonical three-dimensionalgrid is given by

I'=Z.a+Z.B+ Ly

wherea, 8 and~ are position vectors of three five-fold icosahedron vertices forming an
equilateral triangle . For instance,

1 1 1 1 1/71
=—(1=,0 ==-10,1, - ==-(-,0,1).
a 2<,t,> B 2(, ,t) Y Z(r’ )

Again we can force the structure in order to have a complete five-fold symmetry by
considering the set

6
> Z.q; (45)
i=1

when the sum runs on half of the set of all icosahedron vertices. By construction the set
algebraically conjugate to (45) will densely fill a contracted icosahedron in space.
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